Support and discussions for Molcas and OpenMolcas users and developers
You are not logged in.
Please note: The forum's URL has changed. The new URL is: https://molcasforum.univie.ac.at. Please update your bookmarks!
You can choose an avatar and change the default style by going to "Profile" → "Personality" or "Display".Dear Molcas Forum,
After taking a look at the documentation about the use of SINGLE_ANISO[1][2], I'm still facing problems in understanding how it works. Can someone provide me one practical, hands on, example for cobalt?
[1] - http://www.molcas.org/documentation/manual/node49.html
[2] - http://www.molcas.org/documentation/manual/node105.html
---
Henrique C. S. Junior
Industrial Chemist - UFRRJ
MSc Inorganic Chemistry Student - UFRRJ
Offline
Dear Henrique,
Here I try to provide a basic input & output for a hypothetical Co(II) compound.
The complete input:
&SEWARD &END
Title
cobalt example
ANGM
-2.80118000 9.91634000 19.40386000 Angstrom
AMFI
Basis Set
Co.ANO-RCC-MB.
Co1 -2.80118000 9.91634000 19.40386000 Angstrom
End of Basis Set
Basis Set
O.ANO-RCC-MB.
O2 -3.59660000 12.00284000 20.51731000 Angstrom
O3 -5.12835000 10.85934000 19.53431000 Angstrom
O5 -5.70975000 12.39302000 20.99406000 Angstrom
O6 -1.30202341 11.67611386 19.17300658 Angstrom
O7 -3.84191000 9.45315000 21.48634000 Angstrom
O8 -1.27500262 8.12582233 19.18634310 Angstrom
O13 -3.94611990 9.65426823 17.48476360 Angstrom
End of Basis Set
Basis Set
N.ANO-RCC-MB.
N4 -4.85020000 11.78071000 20.36823000 Angstrom
End of Basis Set
Basis Set
H.ANO-RCC-MB.
H9 -1.23636310 12.09677337 18.41017549 Angstrom
H10 -1.07910455 7.59540828 19.85227241 Angstrom
H11 -3.30514987 9.28034259 22.26327382 Angstrom
H12 -4.79957696 9.43862752 21.55163236 Angstrom
H14 -4.64801074 9.00163025 17.42987361 Angstrom
H15 -3.73273676 10.19508893 16.72083912 Angstrom
H16 -0.75470916 11.94100908 19.91589125 Angstrom
End of Basis Set
End Of Input
Explanation:
&SEWARD -- call this program
AMFI - Atomic Mean Field Integrals are needed to account the spin-orbit interaction
ANGM - Angular momentum integrals are needed for the account of magnetic properties
Basis sets used for this calculation are taken form the ANO-RCC library and are of MB quality (smallest possible): Co.ANO-RCC-MB, O.ANO-RCC-MB, N.ANO-RCC-MB, H.ANO-RCC-MB. For a real calculation you will have to use larger basis sets. Check the basis set library. There are a large variety of basis sets in the literature. Not all the basis sets are included in MOLCAS, but you can get them from the EMSL basis set library (https://bse.pnl.gov/bse/portal) and use them in MOLCAS as well.
Each atom must have its own label. Keyword "Angstrom" states that the coordinates are given in Angstrom units. Otherwise atomic length unit is assumed.
&RASSCF
SYMM
1
Spin
4
nActel
7 0 0
Inactive
45
Ras1
0
Ras2
5
Ras3
0
CIROOT
10 10 1
OrbL
ALL
ORBA
FULL
End Of Input
>>COPY $Project.JobIph JOB001
&RASSCF
The RASSCF calculation will compute the lowest 10 states (required by the CIROOT keyword) arising form the active space CAS(7 in5) (defined by the keywords (Ras1, Ras2, Ras3 and nActel)). 45 orbitals are included in the "inactive" space ( doubly occupied, INAC keyword). All ten states have spin S=3/2 (required by the keyword SPIN: 4=2*3/2+1). Keywords ORBListening and ORBAppearance define the amount of data printed in the standard output.
Here one may include also dynamical electron correlation by means of MS-CASPT2 or XMS-CASPT2. Check the manual for it.
&RASSI &END
MEES
Properties
3
'AngMom ' 1
'AngMom ' 2
'AngMom ' 3
NR OF JOBIPHS
1 10
1 2 3 4 5 6 7 8 9 10
SpinOrbit
EJOB
End of Input
&RASSI program computes the spin-orbit spectrum on the basis of the input states. It also computes the matrix elements of various operators, including the ANGMOM operators. Please note, that the diagonal elements of the effective Hamiltonian built and diagonalised by the RASSI code are the energies of the input states. The quality of the resulting spin-orbit spectra will be function of the quality of the input states. You may include in the spin-orbit mixing states from several JOB00x files.
&SINGLE_ANISO
MLTP
4
2 2 2 2 2 2 2 2
TINT
0 300 301
HINT
0 7.0 71
TMAG
6 1.0 1.2 1.8 2.5 2.9 3.6
End Of Input
>>COPY $WorkDir/ANISOINPUT $FileDir/co_example_1.aniso
The SINGLE_ANISO is usually the last step. It uses the spin-orbit energy spectra and the matrix elements of the orbital momentum to calculate various properties: parameters of pseudo spin Hamiltonians magnetic susceptibility, molar magnetisation, molar torque function and parameters crystal field for lanthanides.
MLTP keyword requires the computation of the g tensor for 4 groups of spin-orbit states, the dimensionality of each group being 2 (Kramers doublets).
TINT requires computation of the magnetic susceptibility in the temperature interval 0.0K - 300.0K distributed equally in 300 temperature intervals.
TMAG requires computation of powder molar magnetisation at 6 temperature points, in Kelvin (K): 1.0K, 1.2K, 1.8K, 2.5K, 2.9K and 3.6K.
HINT defines the range for the magnetic field strength, in Tesla. I usually save the ANISOINPUT file for the cases I need to restart (or redo later) the SINGLE_ANISO calculation (in the absence of any RASSCF or RASSI calculations).
Offline
Hello, @liviu.ungur, thank you for your kind reply: I couldn't ask for a better explanation and now I believe I have what it takes to get started.
Thank you so much.
---
Henrique C. S. Junior
Industrial Chemist - UFRRJ
MSc Inorganic Chemistry Student - UFRRJ
Offline
Here I show a few important points in the output:
SEWARD will generate:
Multipole Moment integrals up to order 2
Kinetic Energy integrals
Nuclear Attraction integrals (point charge)
One-Electron Hamiltonian integrals
Velocity integrals
Relativistic Douglas-Kroll-Hess integrals:
- Parametrization : EXP
- DKH order of Hamiltonian: 2
- DKH order of Properties : 0
- multipole moment operators
- electric potential operators
- contact operators
Orbital angular momentum around (-2.8012 9.9163 19.4039 )
Atomic mean-field integrals
Two-Electron Repulsion integrals
****************************************************************************************
* *
* cobalt example *
* *
****************************************************************************************
Integrals are discarded if absolute value <: 0.10E-13
Integral cutoff threshold is set to <: 0.10E-15
This section will show you which integrals are actually computed. In case you do not see "Atomic mean-field integrals" or "Orbital angular momentum" or you notice something strange -- re-check the input and restart.
++ Wave function specifications:
-----------------------------
Number of closed shell electrons 90
Number of electrons in active shells 7
Max number of holes in RAS1 space 0
Max nr of electrons in RAS3 space 0
Number of inactive orbitals 45
Number of active orbitals 5
Number of secondary orbitals 15
Spin quantum number 1.5
State symmetry 1
--
++ Orbital specifications:
-----------------------
Symmetry species 1
a
Frozen orbitals 0
Inactive orbitals 45
Active orbitals 5
RAS1 orbitals 0
RAS2 orbitals 5
RAS3 orbitals 0
Secondary orbitals 15
Deleted orbitals 0
Number of basis functions 65
--
++ CI expansion specifications:
----------------------------
Number of CSFs 10
Number of determinants 10
Number of root(s) required 10
Root chosen for geometry opt. 10
CI roots used 1 2 3 4 5 6 7 8 9 10
weights 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
highest root included in the CI 10
max. size of the explicit Hamiltonian 10
--
++ Optimization specifications:
----------------------------
RASSCF algorithm: Conventional
Maximum number of macro iterations 200
Maximum number of SX iterations 100
Threshold for RASSCF energy 0.100E-07
Threshold for max MO rotation 0.100E+00
Threshold for max BLB element 0.100E-03
Level shift parameter 0.500E+00
Make Quasi-Newton update
--
Orbitals from runfile: guessorb orbitals
Detected guessorb orbitals
The MO-coefficients are taken from guessorb on runfile
Total molecular charge 0.00
************************************************************************************************************************
* *
* Wave function control section *
* *
************************************************************************************************************************
RASSCF iterations: Energy and convergence statistics
----------------------------------------------------
Iter CI SX CI RASSCF Energy max ROT max BLB max BLB Level Ln srch Step QN Walltime
iter iter root energy change param element value shift minimum type update hh:mm:ss
Nr of preliminary CI iterations: 1
Total energies have been shifted. Add -1000.00 au
1 1 15 0 -970.93047813 0.00E+00 -0.23E+00* 25 51 1 0.43E+00* 1.41 0.00 SX NO 0:00:00
2 1 15 0 -972.41669784 -0.15E+01* 0.22E+00* 26 53 1 0.23E+00* 0.82 0.00 SX NO 0:00:00
3 1 12 0 -973.22531745 -0.81E+00* 0.24E+00* 15 65 1 0.15E+00* 0.59 0.00 SX NO 0:00:00
4 1 12 0 -973.53711227 -0.31E+00* 0.24E+00* 15 65 1 0.11E+00* 0.41 0.00 SX NO 0:00:00
5 1 11 0 -973.72953108 -0.19E+00* 0.16E+00* 17 63 1 0.67E-01* 0.40 1.84 QN YES 0:00:00
6 1 10 0 -973.81342768 -0.84E-01* 0.79E-01 46 51 1 -0.40E-01* 0.40 1.45 QN YES 0:00:00
7 1 10 0 -973.84457787 -0.31E-01* 0.17E+00* 45 48 1 -0.36E-01* 0.40 2.50 QN YES 0:00:00
8 1 9 0 -973.89768506 -0.53E-01* -0.21E+00* 45 48 1 -0.47E-01* 0.44 2.29 QN YES 0:00:00
9 1 9 0 -973.94099157 -0.43E-01* -0.60E-01 44 51 1 0.59E-01* 0.51 1.12 QN YES 0:00:00
10 1 9 0 -973.95525830 -0.14E-01* 0.57E-01 46 51 1 0.57E-01* 0.52 2.09 QN YES 0:00:00
11 1 9 0 -973.98399834 -0.29E-01* 0.66E-01 46 51 1 0.57E-01* 0.53 1.99 QN YES 0:00:00
12 1 9 0 -974.00283956 -0.19E-01* 0.34E-01 46 51 1 0.39E-01* 0.53 1.62 LS YES 0:00:00
13 1 9 0 -974.00605212 -0.32E-02* -0.26E-01 46 51 1 0.29E-01* 0.53 1.22 QN YES 0:00:00
14 1 8 0 -974.00969450 -0.36E-02* -0.27E-01 46 51 1 0.15E-01* 0.54 2.17 LS YES 0:00:00
15 1 8 0 -974.01116390 -0.15E-02* 0.98E-02 32 58 1 -0.74E-02* 0.54 1.13 QN YES 0:00:00
16 1 8 0 -974.01164929 -0.49E-03* 0.41E-02 43 51 1 0.51E-02* 0.54 1.53 QN YES 0:00:00
...
Check how the RASSCF calculation understood the input data and the convergence process. Check the charge of the computed system.
IN case the convergence is poor -- double check the total charge, size of the active space, etc. You may need to change the place of some orbitals (check the key ALTER).
Important: do not mix by spin-orbit coupling states which have not converged at RASSCF/CASPT2 level. You will end up with garbage results.
Note: transformation to natural orbitals
has been made, which may change the order of the CSFs.
printout of CI-coefficients larger than 0.05 for root 1
energy= -1974.043653
conf/sym 11111 Coeff Weight
1 22uuu 0.84026 0.70604
2 2u2uu -0.06281 0.00395
3 2uu2u -0.08220 0.00676
4 2uuu2 0.32837 0.10783
6 u2u2u -0.24004 0.05762
7 u2uu2 0.16438 0.02702
8 uu22u 0.05016 0.00252
9 uu2u2 -0.23517 0.05531
10 uuu22 -0.17506 0.03065
printout of CI-coefficients larger than 0.05 for root 2
energy= -1974.042540
conf/sym 11111 Coeff Weight
1 22uuu 0.15393 0.02369
2 2u2uu -0.08620 0.00743
4 2uuu2 -0.71113 0.50570
5 u22uu 0.27337 0.07473
6 u2u2u 0.21242 0.04512
7 u2uu2 0.42805 0.18322
8 uu22u 0.13594 0.01848
9 uu2u2 -0.09354 0.00875
10 uuu22 -0.36451 0.13286
printout of CI-coefficients larger than 0.05 for root 3
energy= -1974.037152
conf/sym 11111 Coeff Weight
1 22uuu 0.30235 0.09141
2 2u2uu 0.56813 0.32277
3 2uu2u 0.54693 0.29913
5 u22uu 0.32886 0.10815
6 u2u2u 0.31099 0.09672
7 u2uu2 -0.19655 0.03863
8 uu22u -0.08441 0.00712
10 uuu22 0.18599 0.03459
...
These are the Configuration Interaction vectors. "22uuu" are the label for a given configuration state function (CSF). Usually each CSF is made of several Slater Determinants, with strict coefficients between them, imposed by the total spin S of the CSF.
------------------------------
Average CI energy -1974.01190636
RASSCF energy for state 10 -1973.95064512
Super-CI energy -0.00000000
RASSCF energy change -0.00000000
Max change in MO coefficients 0.130E-04
Max non-diagonal density matrix element -0.158E-04
Maximum BLB matrix element -0.686E-05
(orbital pair 43, 51 in symmetry 1)
Norm of electronic gradient 0.246E-01
--
Final state energy(ies):
------------------------
:: RASSCF root number 1 Total energy: -1974.04365332
:: RASSCF root number 2 Total energy: -1974.04254036
:: RASSCF root number 3 Total energy: -1974.03715162
:: RASSCF root number 4 Total energy: -1974.03438412
:: RASSCF root number 5 Total energy: -1974.03383467
:: RASSCF root number 6 Total energy: -1974.03110104
:: RASSCF root number 7 Total energy: -1974.02702177
:: RASSCF root number 8 Total energy: -1973.96523069
:: RASSCF root number 9 Total energy: -1973.95350087
:: RASSCF root number 10 Total energy: -1973.95064512
These are they final RASSCF energies of your calculation. You must see them as well in the following RASSI calculation (in case CASPT2 is not done).
Orbital 41 42 43 44 45 46 47 48 49 50
Energy -0.4310 -0.4223 -0.4127 -0.3581 -0.3531 0.0000 0.0000 0.0000 0.0000 0.0000
Occ. No. 2.0000 2.0000 2.0000 2.0000 2.0000 1.4000 1.4000 1.4000 1.4000 1.4000
14 CO1 3d2- 0.0009 0.0036 -0.0014 0.0143 -0.0996 -0.0191 -0.3375 0.8179 -0.1762 -0.4235
15 CO1 3d1- -0.0294 0.0025 0.0153 0.0126 -0.0173 0.6915 -0.4813 0.0201 0.5095 0.1822
16 CO1 3d0 -0.0195 -0.0061 0.0003 -0.0038 -0.0633 0.4091 0.1697 0.2468 -0.6203 0.5995
17 CO1 3d1+ 0.0004 -0.0066 -0.0042 -0.0094 0.0207 -0.4199 -0.7778 -0.2212 -0.2691 0.3206
18 CO1 3d2+ 0.0498 -0.0012 0.0061 -0.0540 -0.0285 0.4233 -0.1596 -0.4642 -0.5014 -0.5734
Always check the obtained orbitals!!! In this particular case the active orbitals (46-50) are localised on the Co site. You may want to use the Grid_IT and GV.exe program for visualisation of the shape of the molecular orbitals. Consult the corresponding sections in the manual.
SPIN-FREE ENERGIES:
(Shifted by EVAC (a.u.) = -1000.0)
SF State Relative EVAC(au) Rel lowest level(eV) D:o, cm**(-1)
1 -974.04365332 0.000000 0.000
2 -974.04254036 0.030285 244.266
3 -974.03715162 0.176920 1426.959
4 -974.03438412 0.252228 2034.354
5 -974.03383467 0.267179 2154.944
6 -974.03110104 0.341565 2754.908
7 -974.02702177 0.452567 3650.203
8 -973.96523069 2.133988 17211.777
9 -973.95350087 2.453173 19786.175
10 -973.95064512 2.530882 20412.941
These are the energies of the input states to RASSI program. They must be the same as those obtained in RASSCF or CASPT2 calculations. In this particular example, the lowest 7 states originate from the free ion 4F multiplet, while the three upper states originate form the 4P multiplet. This is the reason why there is a large energy difference between the two groups.
Eigenvalues of complex Hamiltonian:
-----------------------------------
(Shifted by EVAC (a.u.) = -1000.0)
Relative EVac(au) Rel lowest level(eV) D:o, cm**(-1)
1 -974.04609242 0.000000 0.000
2 -974.04609242 0.000000 0.000
3 -974.04464967 0.039259 316.647
4 -974.04464967 0.039259 316.647
5 -974.04278499 0.090000 725.897
6 -974.04278499 0.090000 725.897
7 -974.04111005 0.135577 1093.503
8 -974.04111005 0.135577 1093.503
9 -974.03855579 0.205082 1654.100
10 -974.03855579 0.205082 1654.100
11 -974.03761468 0.230691 1860.649
12 -974.03761468 0.230691 1860.649
13 -974.03550416 0.288121 2323.855
14 -974.03550416 0.288121 2323.855
15 -974.03416490 0.324564 2617.789
16 -974.03416490 0.324564 2617.789
17 -974.03384904 0.333159 2687.111
18 -974.03384904 0.333159 2687.111
19 -974.03245099 0.371202 2993.947
20 -974.03245099 0.371202 2993.947
21 -974.03105863 0.409090 3299.536
22 -974.03105863 0.409090 3299.536
23 -974.03004966 0.436546 3520.980
24 -974.03004966 0.436546 3520.980
25 -974.02596643 0.547656 4417.144
26 -974.02596643 0.547656 4417.144
27 -974.02552610 0.559638 4513.786
28 -974.02552610 0.559638 4513.786
29 -973.96537746 2.196366 17714.885
30 -973.96537746 2.196366 17714.885
31 -973.96529796 2.198529 17732.334
32 -973.96529796 2.198529 17732.334
33 -973.95388624 2.509058 20236.917
34 -973.95388624 2.509058 20236.917
35 -973.95346641 2.520482 20329.060
36 -973.95346641 2.520482 20329.060
37 -973.95052995 2.600387 20973.537
38 -973.95052995 2.600387 20973.537
39 -973.95019167 2.609592 21047.783
40 -973.95019167 2.609592 21047.783
These is the final energy spectrum of the calculated molecule. It is the properties of these states which are usually measured in various experiments. The magnetic properties resulting from these states are further computed by the SINGLE_ANISO.
Complex eigenvectors in basis of non-so eigenstates:
-----------------------------------------------------
(A selection of the largest components)
Energy (au) -974.04609242 -974.04609242 -974.04464967 -974.04464967
SFS S Ms 1 2 3 4
1 1.5 -1.5 ( 0.0642, 0.0229) (-0.0734,-0.3815) (-0.3394, 0.2935) ( 0.5883, 0.0101)
1 1.5 -0.5 (-0.1531,-0.6454) ( 0.0325,-0.0314) ( 0.1359, 0.2869) (-0.0329, 0.3033)
1 1.5 0.5 (-0.0268, 0.0363) ( 0.6601, 0.0659) ( 0.0927, 0.2907) ( 0.0760,-0.3083)
1 1.5 1.5 ( 0.3878, 0.0220) ( 0.0313, 0.0605) ( 0.5745,-0.1272) ( 0.3911, 0.2199)
2 1.5 -1.5 (-0.1182, 0.2829) ( 0.0082, 0.0039) (-0.0324,-0.3599) ( 0.1646,-0.0704)
2 1.5 -0.5 ( 0.0681,-0.0219) (-0.3943,-0.3543) (-0.0090, 0.0940) ( 0.1797,-0.0696)
2 1.5 0.5 (-0.4036,-0.3436) ( 0.0126,-0.0704) (-0.1900,-0.0324) (-0.0276,-0.0903)
2 1.5 1.5 (-0.0050,-0.0076) ( 0.2646,-0.1548) ( 0.1753, 0.0362) (-0.0400,-0.3591)
Energy (au) -974.04278499 -974.04278499 -974.04111005 -974.04111005
SFS S Ms 5 6 7 8
1 1.5 -1.5 ( 0.0171,-0.0674) (-0.1189,-0.3134) ( 0.0703, 0.1457) ( 0.2728, 0.0412)
1 1.5 -0.5 (-0.1554, 0.1140) ( 0.1190,-0.1183) ( 0.2644,-0.3787) ( 0.0092,-0.0477)
1 1.5 0.5 (-0.1589,-0.0539) (-0.1897,-0.0340) ( 0.0419,-0.0247) (-0.2679, 0.3762)
1 1.5 1.5 ( 0.0310, 0.3338) (-0.0450,-0.0530) ( 0.1304, 0.2432) (-0.1608,-0.0173)
2 1.5 -1.5 (-0.7139,-0.0316) ( 0.0690,-0.0139) ( 0.3348,-0.1523) ( 0.0701,-0.1240)
2 1.5 -0.5 (-0.1093,-0.1253) ( 0.3403, 0.2317) (-0.1184,-0.0885) (-0.5483, 0.2447)
2 1.5 0.5 (-0.2038, 0.3578) (-0.0430, 0.1605) (-0.0464, 0.5986) (-0.1231,-0.0818)
2 1.5 1.5 ( 0.0681,-0.0178) ( 0.6273,-0.3423) (-0.0933, 0.1077) ( 0.0310,-0.3665)
3 1.5 -0.5 ( 0.0124, 0.0090) ( 0.0789, 0.0140) ( 0.0419, 0.0474) (-0.2151, 0.0329)
3 1.5 0.5 (-0.0647, 0.0473) ( 0.0072,-0.0135) ( 0.0412, 0.2137) ( 0.0587, 0.0235)
This section shows the composition of the spin-orbit wave functions. Note that in this case the lowest 8 spin-orbit states have their origin in the lowest two spin quartet states. The large mixing coefficients denote the strong mixing between the two quartet states.
PROPERTY: ANGMOM COMPONENT: 1
ORIGIN: -0.28011800D+01 0.99163400D+01 0.19403860D+02
STATE 1 2 3 4
1 -0.678715983E-16 1.29517567 -1.05159886 -0.455818127
2 -1.29517567 0.521353196E-15 0.219862291 -1.15230837
3 1.05159886 -0.219862291 0.103855794E-15 -0.108352959
4 0.455818127 1.15230837 0.108352959 0.102762056E-14
5 -0.192715880E-01 0.721906294 1.36112541 0.683314996
6 -1.05947982 0.100640021 0.195309200 0.544220258
7 0.219885278E-01 -0.646965515 0.539293254 1.02387329
8 -0.139813656E-01 0.662721601E-01 0.692081752E-02 -0.141845256E-01
9 -0.247253477E-01 -0.235122715E-01 0.786947914E-01 0.804209654E-01
10 0.320670853E-02 0.164716074E-01 0.367470998E-01 0.504346346E-01
STATE 5 6 7 8
1 0.192715880E-01 1.05947982 -0.219885278E-01 0.139813656E-01
2 -0.721906294 -0.100640021 0.646965515 -0.662721601E-01
3 -1.36112541 -0.195309200 -0.539293254 -0.692081752E-02
4 -0.683314996 -0.544220258 -1.02387329 0.141845256E-01
5 0.694712073E-15 -0.278860046 0.879196777 -0.271378018E-01
6 0.278860046 0.217756479E-14 0.989383925 0.571064813E-02
7 -0.879196777 -0.989383925 -0.115699508E-14 -0.656321602E-01
8 0.271378018E-01 -0.571064813E-02 0.656321602E-01 -0.134294341E-14
9 0.376167668E-01 -0.163528409 0.532607253E-01 0.329364903
10 0.569664529E-02 -0.536407194E-02 0.142128173 0.588497229
STATE 9 10
1 0.247253477E-01 -0.320670853E-02
2 0.235122715E-01 -0.164716074E-01
3 -0.786947914E-01 -0.367470998E-01
4 -0.804209654E-01 -0.504346346E-01
5 -0.376167668E-01 -0.569664529E-02
6 0.163528409 0.536407194E-02
7 -0.532607253E-01 -0.142128173
8 -0.329364903 -0.588497229
9 0.181379634E-14 -0.649999114
10 0.649999114 0.334841034E-15
PROPERTY: ANGMOM COMPONENT: 2
ORIGIN: -0.28011800D+01 0.99163400D+01 0.19403860D+02
STATE 1 2 3 4
1 -0.167159447E-14 -1.87319493 0.776304708 -0.347162535
2 1.87319493 -0.203502898E-14 0.884133937E-01 0.591343185
3 -0.776304708 -0.884133937E-01 0.417301168E-15 -0.786808267
4 0.347162535 -0.591343185 0.786808267 -0.524776958E-15
5 0.226637711 0.682531419 1.12409901 -0.597868611
6 -0.947904657 -0.363501746 0.402074499 0.440631154
7 0.121908206 -0.591264693 0.557473584 -0.112851399
8 0.282411105E-01 0.558205926E-01 0.180477012E-01 0.229288225E-01
9 -0.414354065E-01 0.556515491E-01 -0.362436634E-01 0.553487840E-01
10 0.266716072E-02 0.481220498E-01 0.119950399 0.152467220E-02
STATE 5 6 7 8
1 -0.226637711 0.947904657 -0.121908206 -0.282411105E-01
2 -0.682531419 0.363501746 0.591264693 -0.558205926E-01
3 -1.12409901 -0.402074499 -0.557473584 -0.180477012E-01
4 0.597868611 -0.440631154 0.112851399 -0.229288225E-01
5 -0.492106085E-15 -0.818051712 0.837842743 0.489281259E-02
6 0.818051712 0.457746355E-16 -1.51932133 0.395264626E-01
7 -0.837842743 1.51932133 -0.259031822E-14 -0.106661249E-01
8 -0.489281259E-02 -0.395264626E-01 0.106661249E-01 -0.691353418E-17
9 0.591741693E-02 -0.951384155E-01 -0.773084511E-01 0.407060213
10 0.172120226E-02 -0.666114579E-01 0.946284345E-01 0.493168468
STATE 9 10
1 0.414354065E-01 -0.266716072E-02
2 -0.556515491E-01 -0.481220498E-01
3 0.362436634E-01 -0.119950399
4 -0.553487840E-01 -0.152467220E-02
5 -0.591741693E-02 -0.172120226E-02
6 0.951384155E-01 0.666114579E-01
7 0.773084511E-01 -0.946284345E-01
8 -0.407060213 -0.493168468
9 0.127863833E-14 0.736072863
10 -0.736072863 0.100286416E-14
PROPERTY: ANGMOM COMPONENT: 3
ORIGIN: -0.28011800D+01 0.99163400D+01 0.19403860D+02
STATE 1 2 3 4
1 0.818443167E-15 0.324861887 1.02765624 -0.193146406
2 -0.324861887 0.152078720E-14 0.281035937E-01 1.25062628
3 -1.02765624 -0.281035937E-01 -0.820511254E-15 1.32272907
4 0.193146406 -1.25062628 -1.32272907 0.636876994E-15
5 -0.522693728E-01 0.441227083 0.840689837 -0.280692576
6 -0.664289133 0.409893527 -0.755831290 0.219582349
7 -0.238138671 -0.417936164 0.403908737 -1.52533842
8 0.481676217E-02 0.735007715E-02 0.218981608E-01 0.221246284E-01
9 -0.146726794E-01 0.109423801E-02 -0.492367702E-01 0.186418823E-01
10 0.728280725E-02 0.203631483E-01 0.626645081E-01 -0.953239639E-01
STATE 5 6 7 8
1 0.522693728E-01 0.664289133 0.238138671 -0.481676217E-02
2 -0.441227083 -0.409893527 0.417936164 -0.735007715E-02
3 -0.840689837 0.755831290 -0.403908737 -0.218981608E-01
4 0.280692576 -0.219582349 1.52533842 -0.221246284E-01
5 -0.489811721E-15 1.32363443 0.545463874 -0.542855424E-02
6 -1.32363443 0.396500896E-15 0.377659599 -0.432480645E-01
7 -0.545463874 -0.377659599 0.144424068E-14 -0.379739031E-01
8 0.542855424E-02 0.432480645E-01 0.379739031E-01 -0.220119699E-15
9 -0.486312275E-01 -0.424691457E-01 0.119702690 -0.741148100
10 0.982018227E-02 0.183697904 0.785578030E-01 0.509636445
STATE 9 10
1 0.146726794E-01 -0.728280725E-02
2 -0.109423801E-02 -0.203631483E-01
3 0.492367702E-01 -0.626645081E-01
4 -0.186418823E-01 0.953239639E-01
5 0.486312275E-01 -0.982018227E-02
6 0.424691457E-01 -0.183697904
7 -0.119702690 -0.785578030E-01
8 0.741148100 -0.509636445
9 -0.376632117E-15 0.167698496
10 -0.167698496 -0.115594437E-14
These are the matrix elements of the orbital momentum in the basis of the 10 RASSCF input states. These matrix elements are further used by SINGLE_ANISO.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CALCULATION OF PSEUDOSPIN HAMILTONIAN TENSORS FOR THE MULTIPLET 1 ( effective S = 1/2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The pseudospin is defined in the basis of the following spin-orbit states:
spin-orbit state 1. energy(1) = 0.000 cm-1.
spin-orbit state 2. energy(2) = 0.000 cm-1.
g TENSOR:
--------------------------------------------------------|
MAIN VALUES | MAIN MAGNETIC AXES | x , y , z -- initial Cartesian axes
-------------------|----|----- x ------- y ------- z ---| Xm, Ym, Zm -- main magnetic axes
gX = 0.089989714 | Xm | -0.526105 -0.347839 0.776029 |
gY = 0.098966632 | Ym | -0.603754 -0.489876 -0.628889 |
gZ = 10.958015941 | Zm | 0.598911 -0.799393 0.047717 |
--------------------------------------------------------|
CHECK-SIGN parameter = 9.964053
The sign of the product gX * gY * gZ for multiplet 1: > 0.
This section shows the g tensor of the ground Kramers doublet. Since the gX and gY are much smaller than the gZ component, the Zm axis is denoted as the main magnetic axis of the computed molecule. The "Zm | 0.598911 -0.799393 0.047717 |" denote the cartesian components of the Zm vector.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CALCULATION OF THE MAGNETIC SUSCEPTIBILITY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Temperature dependence of the magnetic susceptibility calculated in
301 points, equally distributed in temperature range 0.0 --- 300.0 K.
| T | Statistical | CHI*T | CHI*T | CHI | 1/CHI |
| | Sum (Z) | (zJ=0) | | | |
| | | | | | |
-----|----------------------------------------------------------------------------------|
Units| Kelvin | --- | cm3*K/mol | cm3*K/mol | cm3/mol | mol/cm3 |
-----|----------------------------------------------------------------------------------|
| 0.000100 | 0.19975E+01 | 3.75446016 | 3.75446016 | 0.37545E+05 | 0.0000266 |
| 1.000000 | 0.20000E+01 | 3.75892336 | 3.75892336 | 0.37589E+01 | 0.2660336 |
| 2.000000 | 0.20000E+01 | 3.76338701 | 3.76338701 | 0.18817E+01 | 0.5314362 |
| 3.000000 | 0.20000E+01 | 3.76785066 | 3.76785066 | 0.12560E+01 | 0.7962099 |
| 4.000000 | 0.20000E+01 | 3.77231431 | 3.77231431 | 0.94308E+00 | 1.0603570 |
| 5.000000 | 0.20000E+01 | 3.77677796 | 3.77677796 | 0.75536E+00 | 1.3238798 |
| 6.000000 | 0.20000E+01 | 3.78124161 | 3.78124161 | 0.63021E+00 | 1.5867804 |
| 7.000000 | 0.20000E+01 | 3.78570526 | 3.78570526 | 0.54082E+00 | 1.8490610 |
| 8.000000 | 0.20000E+01 | 3.79016891 | 3.79016891 | 0.47377E+00 | 2.1107239 |
| 9.000000 | 0.20000E+01 | 3.79463256 | 3.79463256 | 0.42163E+00 | 2.3717711 |
| 10.000000 | 0.20000E+01 | 3.79909621 | 3.79909621 | 0.37991E+00 | 2.6322050 |
| 11.000000 | 0.20000E+01 | 3.80355986 | 3.80355986 | 0.34578E+00 | 2.8920276 |
| 12.000000 | 0.20000E+01 | 3.80802351 | 3.80802351 | 0.31734E+00 | 3.1512410 |
| 13.000000 | 0.20000E+01 | 3.81248717 | 3.81248717 | 0.29327E+00 | 3.4098475 |
| 14.000000 | 0.20000E+01 | 3.81695082 | 3.81695082 | 0.27264E+00 | 3.6678492 |
| 15.000000 | 0.20000E+01 | 3.82141447 | 3.82141447 | 0.25476E+00 | 3.9252481 |
| 16.000000 | 0.20000E+01 | 3.82587812 | 3.82587812 | 0.23912E+00 | 4.1820465 |
| 17.000000 | 0.20000E+01 | 3.83034177 | 3.83034177 | 0.22531E+00 | 4.4382463 |
| 18.000000 | 0.20000E+01 | 3.83480542 | 3.83480542 | 0.21304E+00 | 4.6938496 |
| 19.000000 | 0.20000E+01 | 3.83926907 | 3.83926907 | 0.20207E+00 | 4.9488587 |
| 20.000000 | 0.20000E+01 | 3.84373272 | 3.84373272 | 0.19219E+00 | 5.2032754 |
...
This section shows the computed magnetic susceptibility. The formula used for this calculation assumes the zero-field limit i.e. B=0.0 Tesla.
--------------------------------------------------------------------------------------------------------------|
VAN VLECK SUSCEPTIBILITY TENSOR FOR zJ = 0, in cm3*K/mol |
--------------------------------------------------------------------------------------------------------------|
T(K) | | Susceptibility Tensor | Main Values | Main Axes |
------------|---|------- x --------- y --------- z ---|-----------------|------ x --------- y --------- z ----|
| x | 4.040050 -5.391297 0.321879 | X: 0.000760 | 0.52615042 0.34787581 -0.77598206 |
0.000100 | y | -5.391297 7.196867 -0.429496 | Y: 0.000919 | -0.60371496 -0.48985031 -0.62894747 |
| z | 0.321879 -0.429496 0.026463 | Z: 11.261701 | 0.59891066 -0.79939295 0.04771712 |
------------|---|------- x --------- y --------- z ---|-----------------|------ x --------- y --------- z ----|
| x | 4.044510 -5.388550 0.321394 | X: 0.007048 | 0.65508502 0.45485013 -0.60330339 |
1.000000 | y | -5.388550 7.199332 -0.428552 | Y: 0.007562 | 0.46059835 0.39254889 0.79608701 |
| z | 0.321394 -0.428552 0.032928 | Z: 11.262161 | 0.59892635 -0.79938522 0.04764967 |
------------|---|------- x --------- y --------- z ---|-----------------|------ x --------- y --------- z ----|
| x | 4.048970 -5.385802 0.320910 | X: 0.013325 | 0.67356195 0.47075499 -0.56982808 |
2.000000 | y | -5.385802 7.201798 -0.427606 | Y: 0.014216 | 0.43310820 0.37334352 0.82038522 |
| z | 0.320910 -0.427606 0.039394 | Z: 11.262620 | 0.59894205 -0.79937748 0.04758215 |
------------|---|------- x --------- y --------- z ---|-----------------|------ x --------- y --------- z ----|
This section shows how the main axes of the susceptibility tensor evolve with temperature.
HIGH-FIELD POWDER MAGNETIZATION
(Units: Bohr magneton)
-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
H(T) |STATISTICAL SUM| 1.000 K. | 1.200 K. | 1.800 K. | 2.500 K. | 2.900 K. | 3.600 K. |
-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
0.000 | 1.9996 | 0.0006730500 | 0.0005610082 | 0.0003742718 | 0.0002696994 | 0.0002326097 | 0.0001875354 |
0.100 | 1.6881 | 0.6555154074 | 0.5507446411 | 0.3711859746 | 0.2685410607 | 0.2318664351 | 0.1871462727 |
0.200 | 1.4735 | 1.2197058919 | 1.0458174824 | 0.7246974903 | 0.5302998270 | 0.4593538103 | 0.3719851370 |
0.300 | 1.3258 | 1.6517762526 | 1.4529641371 | 1.0466163839 | 0.7792830739 | 0.6784676525 | 0.5523428272 |
0.400 | 1.2242 | 1.9599711959 | 1.7675458003 | 1.3288494089 | 1.0108737759 | 0.8859074576 | 0.7262954046 |
0.500 | 1.1543 | 2.1728946672 | 2.0019030498 | 1.5690506709 | 1.2221019707 | 1.0792509569 | 0.8922540094 |
0.600 | 1.1062 | 2.3191840446 | 2.1736924244 | 1.7691420549 | 1.4116044058 | 1.2570012437 | 1.0490122950 |
0.700 | 1.0731 | 2.4207077808 | 2.2993395911 | 1.9334836612 | 1.5793651986 | 1.4185185158 | 1.1957562520 |
0.800 | 1.0503 | 2.4924734466 | 2.3918529910 | 2.0673736781 | 1.7263567314 | 1.5638769003 | 1.3320423224 |
0.900 | 1.0346 | 2.5443475934 | 2.4607900722 | 2.1760840909 | 1.8541791127 | 1.6936890800 | 1.4577529528 |
1.000 | 1.0238 | 2.5827362087 | 2.5129286692 | 2.2643618102 | 1.9647563586 | 1.8089325821 | 1.5730394582 |
1.100 | 1.0164 | 2.6118118380 | 2.5530066972 | 2.3362421746 | 2.0601106427 | 1.9107986833 | 1.6782609037 |
1.200 | 1.0113 | 2.6343241490 | 2.5843278379 | 2.3950382581 | 2.1422119867 | 2.0005730843 | 1.7739255366 |
1.300 | 1.0078 | 2.6521147021 | 2.6092061206 | 2.4434130018 | 2.2128894514 | 2.0795491568 | 1.8606389006 |
1.400 | 1.0053 | 2.6664397690 | 2.6292765697 | 2.4834800814 | 2.2737871715 | 2.1489698685 | 1.9390606586 |
1.500 | 1.0037 | 2.6781729662 | 2.6457074588 | 2.5169058525 | 2.3263503177 | 2.2099926003 | 2.0098705688 |
1.600 | 1.0025 | 2.6879335174 | 2.6593441313 | 2.5450002926 | 2.3718293893 | 2.2636709434 | 2.0737430400 |
1.700 | 1.0017 | 2.6961684816 | 2.6708064137 | 2.5687931310 | 2.4112946188 | 2.3109483100 | 2.1313291373 |
1.800 | 1.0012 | 2.7032062736 | 2.6805548976 | 2.5890953114 | 2.4456550544 | 2.3526592587 | 2.1832447035 |
1.900 | 1.0008 | 2.7092920816 | 2.6889363808 | 2.6065475554 | 2.4756789586 | 2.3895354868 | 2.2300632740 |
2.000 | 1.0006 | 2.7146117070 | 2.6962153194 | 2.6216582407 | 2.5020135843 | 2.4222143403 | 2.2723125963 |
2.100 | 1.0004 | 2.7193078867 | 2.7025958326 | 2.6348327294 | 2.5252033244 | 2.4512483969 | 2.3104737538 |
2.200 | 1.0003 | 2.7234916567 | 2.7082372767 | 2.6463959927 | 2.5457058057 | 2.4771151994 | 2.3449820895 |
2.300 | 1.0002 | 2.7272503889 | 2.7132653975 | 2.6566100438 | 2.5639058414 | 2.5002265846 | 2.3762293069 |
2.400 | 1.0001 | 2.7306535622 | 2.7177804117 | 2.6656873808 | 2.5801273400 | 2.5209373021 | 2.4045662831 |
2.500 | 1.0001 | 2.7337569650 | 2.7218629338 | 2.6738013720 | 2.5946433638 | 2.5395527849 | 2.4303062548 |
2.600 | 1.0001 | 2.7366057956 | 2.7255783698 | 2.6810943045 | 2.6076845602 | 2.5563360341 | 2.4537281389 |
2.700 | 1.0000 | 2.7392369781 | 2.7289802132 | 2.6876836433 | 2.6194461941 | 2.5715136453 | 2.4750798269 |
2.800 | 1.0000 | 2.7416809109 | 2.7321125416 | 2.6936669211 | 2.6300939944 | 2.5852810341 | 2.4945813481 |
2.900 | 1.0000 | 2.7439628016 | 2.7350119266 | 2.6991255744 | 2.6397690054 | 2.5978069402 | 2.5124278377 |
3.000 | 1.0000 | 2.7461036948 | 2.7377089105 | 2.7041279687 | 2.6485916077 | 2.6092372886 | 2.5287922776 |
3.100 | 1.0000 | 2.7481212719 | 2.7402291553 | 2.7087317966 | 2.6566648506 | 2.6196984914 | 2.5438279940 |
3.200 | 1.0000 | 2.7500304775 | 2.7425943463 | 2.7129859875 | 2.6640772158 | 2.6293002613 | 2.5576709137 |
3.300 | 1.0000 | 2.7518440141 | 2.7448229077 | 2.7169322379 | 2.6709049105 | 2.6381380092 | 2.5704415871 |
3.400 | 1.0000 | 2.7535727364 | 2.7469305725 | 2.7206062435 | 2.6772137729 | 2.6462948822 | 2.5822469916 |
3.500 | 1.0000 | 2.7552259667 | 2.7489308406 | 2.7240386957 | 2.6830608590 | 2.6538434978 | 2.5931821326 |
3.600 | 1.0000 | 2.7568117494 | 2.7508353484 | 2.7272560932 | 2.6884957653 | 2.6608474189 | 2.6033314598 |
3.700 | 1.0000 | 2.7583370574 | 2.7526541704 | 2.7302814055 | 2.6935617347 | 2.6673624091 | 2.6127701172 |
3.800 | 1.0000 | 2.7598079609 | 2.7543960640 | 2.7331346175 | 2.6982965827 | 2.6734375011 | 2.6215650434 |
3.900 | 1.0000 | 2.7612297652 | 2.7560686721 | 2.7358331804 | 2.7027334751 | 2.6791159091 | 2.6297759401 |
4.000 | 1.0000 | 2.7626071256 | 2.7576786900 | 2.7383923844 | 2.7069015828 | 2.6844358058 | 2.6374561225 |
4.100 | 1.0000 | 2.7639441413 | 2.7592320035 | 2.7408256705 | 2.7108266345 | 2.6894309882 | 2.6446532659 |
4.200 | 1.0000 | 2.7652444344 | 2.7607338048 | 2.7431448909 | 2.7145313840 | 2.6941314465 | 2.6514100615 |
4.300 | 1.0000 | 2.7665112165 | 2.7621886890 | 2.7453605276 | 2.7180360074 | 2.6985638524 | 2.6577647912 |
4.400 | 1.0000 | 2.7677473433 | 2.7636007353 | 2.7474818776 | 2.7213584406 | 2.7027519787 | 2.6637518331 |
4.500 | 1.0000 | 2.7689553623 | 2.7649735759 | 2.7495172092 | 2.7245146673 | 2.7067170598 | 2.6694021046 |
4.600 | 1.0000 | 2.7701375520 | 2.7663104541 | 2.7514738949 | 2.7275189656 | 2.7104781035 | 2.6747434521 |
4.700 | 1.0000 | 2.7712959562 | 2.7676142739 | 2.7533585254 | 2.7303841195 | 2.7140521593 | 2.6798009930 |
4.800 | 1.0000 | 2.7724324125 | 2.7688876421 | 2.7551770064 | 2.7331216005 | 2.7174545514 | 2.6845974176 |
4.900 | 1.0000 | 2.7735485775 | 2.7701329048 | 2.7569346419 | 2.7357417247 | 2.7206990802 | 2.6891532533 |
5.000 | 1.0000 | 2.7746459478 | 2.7713521783 | 2.7586362067 | 2.7382537886 | 2.7237981983 | 2.6934870991 |
5.100 | 1.0000 | 2.7757258789 | 2.7725473760 | 2.7602860082 | 2.7406661862 | 2.7267631627 | 2.6976158311 |
5.200 | 1.0000 | 2.7767896007 | 2.7737202319 | 2.7618879399 | 2.7429865117 | 2.7296041684 | 2.7015547846 |
5.300 | 1.0000 | 2.7778382317 | 2.7748723204 | 2.7634455290 | 2.7452216486 | 2.7323304648 | 2.7053179151 |
5.400 | 1.0000 | 2.7788727912 | 2.7760050740 | 2.7649619763 | 2.7473778470 | 2.7349504578 | 2.7089179402 |
5.500 | 1.0000 | 2.7798942094 | 2.7771197987 | 2.7664401924 | 2.7494607924 | 2.7374717998 | 2.7123664662 |
5.600 | 1.0000 | 2.7809033373 | 2.7782176874 | 2.7678828284 | 2.7514756649 | 2.7399014682 | 2.7156740993 |
5.700 | 1.0000 | 2.7819009544 | 2.7792998315 | 2.7692923038 | 2.7534271921 | 2.7422458349 | 2.7188505458 |
5.800 | 1.0000 | 2.7828877761 | 2.7803672312 | 2.7706708298 | 2.7553196955 | 2.7445107280 | 2.7219046993 |
5.900 | 1.0000 | 2.7838644601 | 2.7814208051 | 2.7720204313 | 2.7571571312 | 2.7467014858 | 2.7248447205 |
6.000 | 1.0000 | 2.7848316117 | 2.7824613975 | 2.7733429649 | 2.7589431263 | 2.7488230054 | 2.7276781065 |
6.100 | 1.0000 | 2.7857897893 | 2.7834897862 | 2.7746401360 | 2.7606810110 | 2.7508797849 | 2.7304117538 |
6.200 | 1.0000 | 2.7867395084 | 2.7845066886 | 2.7759135133 | 2.7623738471 | 2.7528759617 | 2.7330520142 |
6.300 | 1.0000 | 2.7876812457 | 2.7855127673 | 2.7771645418 | 2.7640244537 | 2.7548153466 | 2.7356047446 |
6.400 | 1.0000 | 2.7886154426 | 2.7865086350 | 2.7783945545 | 2.7656354294 | 2.7567014539 | 2.7380753525 |
6.500 | 1.0000 | 2.7895425085 | 2.7874948594 | 2.7796047827 | 2.7672091729 | 2.7585375283 | 2.7404688358 |
6.600 | 1.0000 | 2.7904628234 | 2.7884719668 | 2.7807963655 | 2.7687479011 | 2.7603265695 | 2.7427898189 |
6.700 | 1.0000 | 2.7913767407 | 2.7894404460 | 2.7819703576 | 2.7702536654 | 2.7620713538 | 2.7450425860 |
6.800 | 1.0000 | 2.7922845893 | 2.7904007513 | 2.7831277374 | 2.7717283659 | 2.7637744536 | 2.7472311096 |
6.900 | 1.0000 | 2.7931866756 | 2.7913533056 | 2.7842694130 | 2.7731737652 | 2.7654382551 | 2.7493590776 |
7.000 | 1.0000 | 2.7940832856 | 2.7922985031 | 2.7853962288 | 2.7745914997 | 2.7670649741 | 2.7514299169 |
-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
---
The field dependence of the powder molar magnetisation. There are keywords to control the integration grid and the size of the exact Zeeman Hamiltonian.
Last edited by liviu.ungur (2016-02-10 14:37:35)
Offline
An alternative way for the first input (coordinates and basis set) is:
&GATEWAY
Coord = my_cobalt_compound.xyz
Basis = ANO-RCC-MB
Group = NoSym
AngM = -2.80118000 9.91634000 19.40386000 Angstrom
&SEWARD
Where the file "my_cobalt_compound.xyz" contains:
16
Co -2.80118000 9.91634000 19.40386000
O -3.59660000 12.00284000 20.51731000
O -5.12835000 10.85934000 19.53431000
O -5.70975000 12.39302000 20.99406000
O -1.30202341 11.67611386 19.17300658
O -3.84191000 9.45315000 21.48634000
O -1.27500262 8.12582233 19.18634310
O -3.94611990 9.65426823 17.48476360
N -4.85020000 11.78071000 20.36823000
H -1.23636310 12.09677337 18.41017549
H -1.07910455 7.59540828 19.85227241
H -3.30514987 9.28034259 22.26327382
H -4.79957696 9.43862752 21.55163236
H -4.64801074 9.00163025 17.42987361
H -3.73273676 10.19508893 16.72083912
H -0.75470916 11.94100908 19.91589125
With an xyz file, the coordinates are in Å by default. The highest symmetry will be automatically identified, so we use "Group=NoSym" to explicitly disable symmetry. With a relativistic basis set like ANO-RCC, AMFI integrals are enabled by default too.
Offline
Thank you guys, for dedicating your time with such complete answers.
Most of the time I use ORCA in my work but for molecular magnetism, Molcas seems to be a better choice and I have to say that I'm impressed on how complete (and beautiful) are the outputs.
I still have some concerns abut how well will Molcas perform with OpenMPI in a CentOS/Fedora system since I only found parallel versions for Ubuntu. (any hint?)
---
Henrique C. S. Junior
Industrial Chemist - UFRRJ
MSc Inorganic Chemistry Student - UFRRJ
Offline
If you want to do parallel calculations, there are a number of caveats you should be aware of:
performance depends on the module (some are not parallel) as well as the features used in the module
performance can be dependent on memory bandwidth, so e.g. caspt2 won't scale that well on a single machine
some modules don't use much data communication, they would scale well, while other would probably need infiniband
For the precompiled versions, performance isn't a major target (I think they even don't use optimized BLAS),
so I very much doubt there would be a noticable difference between platforms or even MPI version.
My advice would be to start with a serial installation, maybe try parallel for your use case just to benchmark.
Only when you need more resources than available on a single machine, then I would look into using a parallel installation,
but then one that is built for that architecture from source, linked with optimized BLAS libraries.
Always check the orbitals.
Offline
Hi,
i am sorry for hijacking this thread but my question is also related to SINGLE_ANISO and i did'nt want to bloat up the forum with multiple threads about the same (general) topic. If this is not desired please let me know and i will create a new thread.
First of all thank you very much for your very detailed instructions on how to use SINGLE_ANISO.
There is the ABCC keyword which gives you the magnetic and anisotropy axes of the g- and D-tensor in the crystal coordinate system which is nice.
But is it possible to calculate the magnetic susceptibility and magnetization along the a b c axes of the crystal?
I think the MVEC and MAVE options come into play here but i don't really get how to use them since i don't know on what the origin of the spherical coordinate system is.
Is it the ANGM coordinates given in the SEWARD module when calculating the integrals?
Why don't we have to give rho (distance to origin), but only theta and phi?
Is it possible to calculate the magnetic susceptibility along the a b c axes of the crystal and not along the main magnetic axes of the mJ multiplett (which is the default, right?)? Since the van-Vleck susceptibility tensor and its temperature dependance is given, can i rotate that onto my crystal coordinates or is there an easier way?
I appreciate every help and feedback. Thank you very much.
Best wishes and kind regards.
Offline
Dear dmueller,
Here are some brief answers:
But is it possible to calculate the magnetic susceptibility and magnetisation
along the a b c axes of the crystal?
Not yet. I will add this function in the next release (8.2). Thanks.
I think the MVEC and MAVE options come into play here but i don't really get
how to use them since i don't know on what the origin of the spherical
coordinate system is. Is it the ANGM coordinates given in the SEWARD module
when calculating the integrals?
MVEC allows you to calculate the magnetisation vector when the applied field has the orientation given by you in the input. What you get as result here is a vector (Mx,My,Mz) with three cartesian components of the magnetisation for each field strength and temperature. You could transform these vectors to the (a,b,c) crystallographic coordinate system. In case your unit cell has more equivalent molecules, then you have to add the contributions to all of them, to be consistent.
MAVE is just defining the integration grid for computing the powder magnetisation, and is probably not needed for your purposes. In 8.1 version the original "in-house" integration grids (from 7.8) have been replaced by more rigorous Lebedev grids. This allows similar quality integration by using less points.
The origin is the same as the origin of ANGM in Seward.
Why don't we have to give rho (distance to origin), but only theta and phi?
Because there is no radial integration involved. In a powder sample, all molecules are disordered, i.e. they have any spatial orientation. The total magnetisation is a sum of all contributions. This is equivalent to applying the magnetic field in an infinite directions to one single molecule, and sum the individual contributions. This is exactly what is implemented in the magnetisation subroutine of S-A. We perform only an angular integration (and not radial integration) of the individual magnetisations when computing the powder M. Radial integration is needed when integrating e.g. electronic density in a molecule, since the density is high in the proximity of the nucleus, and sharply decaying when moving away from it. Distance to the origin would be necessary when computing e.g. the field created by the molecule at a certain point in space.
Is it possible to calculate the magnetic susceptibility along the a b c axes of
the crystal and not along the main magnetic axes of the mJ multiplet (which
is the default, right?)? Since the van-Vleck susceptibility tensor and its
temperature dependance is given, can i rotate that onto my crystal
coordinates or is there an easier way?
You need to calculate XT along main magnetic axes of the ground g tensor (XT_x, XT_y, XT_z) and then apply the same transformation to the (abc) system as done to the g tensor. This seems the simplest route to me. You can do this transformation separately, it is quite straightforward. Let me know if you need the formula. Again in case you have several molecules/unit cell, you need to add all the contributions. I am sorry but this is not implemented. I will add it in for the next release (8.2). Thanks.
Best regards,
Last edited by liviu.ungur (2016-05-03 16:26:07)
Offline
Dear Liviu
thank you very much for your elabore and insightful answers. I really appreciate you taking your time to respond.
Not yet. I will add this function in the next release (8.2). Thanks.
I know this is the most unpleasant question for anybody working on a piece of code and the proper answer is "when it's done", but is there a very rough schedule for 8.2? Say in "a couple of weeks" or "not for months to come"?
If you say 8.1 do you mean 8.0 SP1 or 8.1 ? This may seem like a stupid question but i just checked the download area, there is no 8.1 available for me. Just 8.0 with the CASPT2 and ANO-RCC fixes which are included in SP1.
MVEC allows you to calculate the magnetisation vector when the applied field has the orientation given by you in the input. What you get as result here is a vector (Mx,My,Mz) with three cartesian components of the magnetisation for each field strength and temperature. You could transform these vectors to the (a,b,c) crystallographic coordinate system. In case your unit cell has more equivalent molecules, then you have to add the contributions to all of them, to be consistent.
I have multiple molecules in my unit cell with the same molecular structure but different orientation in the unit cell. They are somewhat tilted towards one another. So i would have to do multiple rotations to account for the different orientations of the molecules in the unit cell.
Is it possible to calculate the magnetic susceptibility along the a b c axes of the crystal and not along the main magnetic axes of the mJ multiplet (which is the default, right?)? Since the van-Vleck susceptibility tensor and its temperature dependance is given, can i rotate that onto my crystal coordinates or is there an easier way?
You need to calculate XT along main magnetic axes of the ground g tensor (XT_x, XT_y, XT_z) and then apply the same transformation to the (abc) system as done to the g tensor. This seems the simplest route to me. You can do this transformation separately, it is quite straightforward. Let me know if you need the formula.
I would use matlab to calculate the rotation matrix and then apply that to the XT vectors in the coordinate system of main magnetic axes. What is your formula?
Thank you very much for sharing your insights.
Last edited by dmueller (2016-05-11 14:32:37)
Offline
8.1 is the current development version. It is available for developers and is meant for putting new code. It is not meant for production calculations.
The release of 8.2 (stable) I assume will happen somewhere in the autumn. I don't know exact date, since the decision is taken by other people.
For the transformation between (abc) and (xyz) coordinate systems look here:
https://drive.google.com/open?id=0BxaVz … lBXRE40TVk
Last edited by liviu.ungur (2016-05-11 14:54:21)
Offline
Dear Prof. Liviu Ungur,
I have seen the calculation setting in RASSI part. I can not understand the key word MEES, could you explain more about the meaning and setting of MEES keyword?
I learnt that the Keyword AngMom calculates the Angular momentum integrals, but why we need 'AngMom' (i.e., 'AngMom ' 1, 'AngMom ' 2, 'AngMom ' 3) announced three times in the RASSI section?
&RASSI &END
MEES
Properties
3
'AngMom ' 1
'AngMom ' 2
'AngMom ' 3
NR OF JOBIPHS
1 10
1 2 3 4 5 6 7 8 9 10
SpinOrbit
EJOB
End of Input
Thank you very much!
Yours sincerely,
Zhenjun Song
Offline
I can not understand the key word MEES, could you explain more about the meaning and setting of MEES keyword?
According to the RASSI manual:
MEES = Demand for printing matrix elements of all selected one-electron properties, over the spin-free eigenstates.
I learnt that the Keyword AngMom calculates the Angular momentum integrals, but why we need 'AngMom' (i.e., 'AngMom ' 1, 'AngMom ' 2, 'AngMom ' 3) announced three times in the RASSI section?
ANGMOM is the internal name for the Angular Momentum Integrals. From general Quantum Mechanics course you know that Angular Momentum (L-operator) has three Cartesian components (x, y, z). 'AngMom ' 1, 'AngMom ' 2, 'AngMom ' 3 specify the three cartesian components of the ANGMOM. 1=X, 2=Y, and 3=Z.
Offline
Hi,
I am using the input files prvided by Prof. Liviu Ungur to learn the calculations on molcas 8.2. I have performed the first step (SEWARD) and it ended properly but I am unable to understand from the log file how 45 inactive orbitals have been chosen. Even I have used (&GUESSORB) command to see the occupation coefficients of the molecular orbitals which is showing upto 48 MO is doubly occupied (occupation coefficient = 2).
If anyone can please help me on how to choose inactive orbitals, it will be very helpful.
Thank you very much
Yours Sincerely,
Bijoy Dey
Offline
The total nuclear charge for the above mentioned Co(II) compound is: 27 (Co) + 7*8 (O) + 1*7 (N) + 7*1 (H) = 97. The compound is considered neutral, thus we have 97 electrons in the system. 7 electrons are considered "active", thus we have 97-7=90 electrons in the inactive space. These electrons need to occupy 45 orbitals, according to Pauli principle (45*2 = 90).
Offline
Thank you for your help sir,
I have run the calculation provided here though it is showing happy landing on the status file, I am unable to understand how to check the convergence at RASSCF and RASSI step. As it is described checking the charge is one way to understand if the calculation is converging or not, is there any other ways by which one can check the convergence at RASSCF and RASSI step. I am confused because of the following text in the RASSCF output in natural bond order analysis of root no 5 and 8 which says "NBO analysis, and just that ONLY, did not converge to a proper answer, sorry. Calculation will continue as normal." and for others roots it shows some diffuse electron densities.
If you could please shed some light on this matter then it will be very helpful for me.
Thank you
Yours sincerely,
Bijoy Dey
Offline
In case RASSCF does not converge, the program will return a clear error message (rc= _NOT_CONVERGED_). In case you get "rc=0" at the very end of the RASSCF output, then you should not worry.
My advice is to have a broader inspection of the results: check the active orbitals, and other computed properties, like electric dipole moments, etc.
The RASSI usually does not pose any convergece problems, since the solution is obtained by full diagonalization of the spin-orbit Hamiltonian. The only thing to care about wrt RASSI is to write the input correctly.
Last edited by liviu.ungur (2018-03-15 17:57:52)
Offline
Hi,
I am using Molcas 8.2. I have done one CASSCF/RASSI-SO/Single_aniso calculation of a cobalt complex. But I have never done CASPT2 calculation. Can you please tell me how I will make the input? I read the manual and I have tried but I am unable to run the calculation because it is showing some error. Upto RASSCF I have done the calculation, next I want to do CASSPT2. Please help me Sir..
Last edited by rahul213 (2018-03-19 17:58:02)
Offline
Hi,
I have some question for MLTP. Can you explain why you set 2 2 2 2 2 2 2 2 ,why not set 4 4 2 2(manual example). I will thank you very much.
Offline
Hi,
I am using Molcas 8.2. I have done one CASSCF/RASSI-SO/Single_aniso calculation of a cobalt complex. But I have never done CASPT2 calculation. Can you please tell me how I will make the input? I read the manual and I have tried but I am unable to run the calculation because it is showing some error. Upto RASSCF I have done the calculation, next I want to do CASSPT2. Please help me Sir..
There is nothing special about CASPT2. Just follow the manual: http://www.molcas.org/documentation/manual/node70.html
As example, for Dy3+ ion, I would use the following input for the states corresponding to S=5/2:
&CASPT2
XMUL
3
11 1 2 3 4 5 6 7 8 9 10 11 * the multiplet 6H
7 12 13 14 15 16 17 18 * the multiplet 6F
3 19 20 21 * the multiplet 6P
IMAG
0.1
MAXI
100
End Of Input
The input for the S=3/2 and S=1/2 is similar, albeit one would need to write down explicitly much more groups of states.
Last edited by liviu.ungur (2018-03-26 13:15:10)
Offline
I have some question for MLTP. Can you explain why you set 2 2 2 2 2 2 2 2 ,why not set 4 4 2 2(manual example). I will thank you very much.
The reason is that the low-lying electronic structure of the above example consists of doublet states (Kramers doublets). Their multiplicity is two. The input requests computation of g tensors for the eight low-lying Kramers doublets.
The manual example "4 4 2 2" requests computation of g tensors for the two low-lying pseudospins S=3/2 (consisting of four spin-orbit states each) and for two doublet states. This keyword specifies the user's choice for the dimensions of the spin-hamiltonian.
Last edited by liviu.ungur (2018-03-26 13:23:18)
Offline
I have a question . when same input file cacluate &SIBGLE_ANISO , i got two different results. in moclas 8..2, my g tensor check sign is <1, but in molcas 8.0 g tensor check sign is 2.5. how can i resolve this problem? Thank you
Offline
Dear All,
I am using molcas 8.2 and I noticed that the crystal field parameters calculated by single_aniso depend on the origin of atomic coordinates. Is it required to have the origin at the atom for which the crystal field parameters are requested?
Thank you,
Alex
Offline
Dear Prof. Liviu Ungur,
I have a question . The program POLY_ANISO needs the following files:aniso_XX.input,chitexp.input,magnexp.input. How to get these files?
I am using calculated by the same example of cobalt example.
"*** Warning! A command /home1/luosc2/soft/molcas/bin/parnell.exe c 1 /tmp/Co-test-cs-1.607/ANISOINPUT 1>&2 returns errorcode 1"
"EMIL input error"
How can i resolve this problem?
Thank you very much.
Yours Sincerely,
shuchang luo
Offline
Hi,
I would you like to know which version of OPENMOLCAS is available for &RASSI and &SINGLE_ANISO. Since I met errors when calculating your example (CoII complex) using OPENMOLCAS v19.11-39-gc72dbf0 .
Yours Sincerely,
Ke Niu
Offline