Support and discussions for Molcas and OpenMolcas users and developers
You are not logged in.
Please note: The forum's URL has changed. The new URL is: https://molcasforum.univie.ac.at. Please update your bookmarks!
You can choose an avatar and change the default style by going to "Profile" → "Personality" or "Display".Hi
I am computing non-adiabatic coupling, and I would like to know which are the "g" and "h" vectors printed in the output file?
This is my input file:
&GATEWAY
Tinker
basis = 6-31G*
group = C1
&SEWARD
&Espf
External = Tinker
lamorok
&RASSCF
JobIph
CIrestart
nactel= 12 0 0
ras2= 11
inactive=58
ciroot=2 2 1
&RASSI
nrof jobiphs
1 2
1 2
&ALASKA
NAC= 1 2
and this is my output file regarding ALASKA module:
()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()
&ALASKA
only a single process is used
available to each process: 5.0 GB of memory, 1 thread
()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()
Threshold for contributions to the gradient: .100E-06
********************************************
* Symmetry Adapted Cartesian Displacements *
********************************************
Irreducible representation : a
Basis function(s) of irrep: x, y, xy, Rz, z, xz, Ry, yz, Rx, I
Basis Label Type Center Phase
1 C1 x 1 1
2 C1 y 1 1
3 C1 z 1 1
4 C2 x 2 1
5 C2 y 2 1
6 C2 z 2 1
7 C3 x 3 1
8 C3 y 3 1
9 C3 z 3 1
10 C4 x 4 1
11 C4 y 4 1
12 C4 z 4 1
13 C5 x 5 1
14 C5 y 5 1
15 C5 z 5 1
16 H6 x 6 1
17 H6 y 6 1
18 H6 z 6 1
19 C7 x 7 1
20 C7 y 7 1
21 C7 z 7 1
22 C8 x 8 1
23 C8 y 8 1
24 C8 z 8 1
25 C9 x 9 1
26 C9 y 9 1
27 C9 z 9 1
28 C10 x 10 1
29 C10 y 10 1
30 C10 z 10 1
31 C11 x 11 1
32 C11 y 11 1
33 C11 z 11 1
34 H12 x 12 1
35 H12 y 12 1
36 H12 z 12 1
37 C13 x 13 1
38 C13 y 13 1
39 C13 z 13 1
40 H14 x 14 1
41 H14 y 14 1
42 H14 z 14 1
43 H15 x 15 1
44 H15 y 15 1
45 H15 z 15 1
46 C16 x 16 1
47 C16 y 16 1
48 C16 z 16 1
49 C17 x 17 1
50 C17 y 17 1
51 C17 z 17 1
52 H18 x 18 1
53 H18 y 18 1
54 H18 z 18 1
55 H19 x 19 1
56 H19 y 19 1
57 H19 z 19 1
58 N20 x 20 1
59 N20 y 20 1
60 N20 z 20 1
61 H21 x 21 1
62 H21 y 21 1
63 H21 z 21 1
64 H22 x 22 1
65 H22 y 22 1
66 H22 z 22 1
67 N23 x 23 1
68 N23 y 23 1
69 N23 z 23 1
70 C24 x 24 1
71 C24 y 24 1
72 C24 z 24 1
73 H25 x 25 1
74 H25 y 25 1
75 H25 z 25 1
76 H26 x 26 1
77 H26 y 26 1
78 H26 z 26 1
79 H27 x 27 1
80 H27 y 27 1
81 H27 z 27 1
82 C28 x 28 1
83 C28 y 28 1
84 C28 z 28 1
85 H29 x 29 1
86 H29 y 29 1
87 H29 z 29 1
88 H30 x 30 1
89 H30 y 30 1
90 H30 z 30 1
91 H31 x 31 1
92 H31 y 31 1
93 H31 z 31 1
94 C32 x 32 1
95 C32 y 32 1
96 C32 z 32 1
97 H33 x 33 1
98 H33 y 33 1
99 H33 z 33 1
100 H34 x 34 1
101 H34 y 34 1
102 H34 z 34 1
103 H35 x 35 1
104 H35 y 35 1
105 H35 z 35 1
106 H36 x 36 1
107 H36 y 36 1
108 H36 z 36 1
109 H37 x 37 1
110 H37 y 37 1
111 H37 z 37 1
No automatic utilization of translational and rotational invariance of the energy is employed.
Skipping Nuclear Charge Contribution
Conventional ERI gradients!
Wavefunction type: State average CASSCF
*****************************************************
* *
* CI derivative coupling *
* *
*****************************************************
Irreducible representation: a
---------------------------------------------------------
X Y Z
---------------------------------------------------------
C1 -0.00005203 0.00045838 0.00062687
C2 -0.00026960 -0.00023013 -0.00067474
C3 0.00034969 0.00006063 -0.00010669
C4 -0.00007677 -0.00005866 0.00004375
C5 0.00044652 -0.00019293 -0.00020138
H6 -0.00003056 -0.00007162 0.00022732
C7 0.00650210 0.00618688 0.00318142
C8 -0.00181171 -0.01699720 -0.01275819
C9 -0.02719530 -0.00819673 0.00348747
C10 0.00197415 0.01053731 0.01070589
C11 0.00005520 0.00001354 -0.00009669
H12 -0.00023083 -0.00002580 0.00035426
C13 -0.00011227 -0.00006994 0.00008358
H14 0.00005089 -0.00003183 0.00008720
H15 0.00037545 -0.00009522 -0.00118454
C16 0.00019890 -0.00020735 0.00066848
C17 0.02047653 0.00826819 -0.00285446
H18 -0.00020647 0.00045793 -0.00008624
H19 -0.00020504 0.00069839 -0.00025571
N20 -0.00004833 0.00003912 -0.00012498
H21 0.00063858 -0.00041403 0.00014625
H22 -0.00000644 0.00002828 -0.00006574
N23 0.00027332 -0.00023066 0.00002867
C24 -0.00021891 -0.00008559 -0.00004627
H25 -0.00008339 -0.00002262 0.00006349
H26 -0.00006287 0.00009023 -0.00002430
H27 -0.00006905 0.00012865 -0.00000247
C28 0.00002221 -0.00002719 0.00002629
H29 0.00003333 -0.00005767 0.00002371
H30 0.00003504 -0.00002740 -0.00000701
H31 0.00012182 -0.00005914 -0.00002966
C32 -0.00007803 -0.00004279 0.00005857
H33 -0.00004248 0.00009192 -0.00004350
H34 -0.00001124 0.00001218 0.00001402
H35 -0.00056571 -0.00036877 -0.00088177
H36 -0.00015927 0.00041949 -0.00039394
H37 -0.00001743 0.00002217 0.00001104
---------------------------------------------------
******************************************************
* *
* CSF derivative coupling *
* *
******************************************************
Irreducible representation: a
---------------------------------------------------------
X Y Z
---------------------------------------------------------
C1 0.00000226 0.00000883 0.00000679
C2 0.00000046 0.00001332 0.00000649
C3 0.00000108 -0.00000033 -0.00000162
C4 -0.00000188 -0.00000004 -0.00000250
C5 0.00000260 0.00000909 0.00000703
H6 0.00006519 -0.00012822 0.00013806
C7 -0.00078274 -0.00053176 -0.00010773
C8 0.00300065 0.00115014 0.00040629
C9 0.00443852 -0.00107034 -0.00259317
C10 -0.00484606 0.00023462 0.00232669
C11 0.00000212 -0.00000029 0.00000118
H12 0.00000060 -0.00000207 0.00000396
C13 0.00000080 -0.00000012 0.00000050
H14 -0.00000100 0.00000156 -0.00000088
H15 -0.00002897 0.00008494 -0.00007106
C16 -0.00028394 0.00011924 0.00006293
C17 0.00021468 -0.00198825 -0.00315100
H18 -0.00000304 0.00000415 -0.00000062
H19 -0.00009598 0.00009031 -0.00003407
N20 -0.00002498 -0.00002547 -0.00004893
H21 0.00004130 -0.00009388 0.00006894
H22 0.00000006 0.00000032 -0.00000003
N23 0.00003096 0.00001388 0.00000787
C24 -0.00003455 -0.00001823 -0.00003054
H25 -0.00000125 -0.00000095 0.00000177
H26 0.00000426 0.00000603 0.00000185
H27 0.00000012 -0.00000003 0.00000004
C28 0.00000010 0.00000003 0.00000004
H29 -0.00000003 -0.00000004 -0.00000008
H30 -0.00000005 -0.00000010 -0.00000009
H31 0.00000002 -0.00000009 0.00000003
C32 0.00000005 0.00000013 -0.00000003
H33 0.00000012 0.00000026 -0.00000015
H34 0.00000002 0.00000003 -0.00000005
H35 -0.00000726 0.00003014 0.00001607
H36 -0.00004503 0.00007326 -0.00007280
H37 0.00000005 -0.00000005 -0.00000009
---------------------------------------------------
Energy difference: 6.489050E-02
*******************************************************
* *
* Total derivative coupling *
* *
*******************************************************
Irreducible representation: a
---------------------------------------------------------
X Y Z
---------------------------------------------------------
C1 -0.00079957 0.00707267 0.00966720
C2 -0.00415424 -0.00353320 -0.01039163
C3 0.00538994 0.00093396 -0.00164572
C4 -0.00118499 -0.00090405 0.00067178
C5 0.00688377 -0.00296412 -0.00309635
H6 -0.00040575 -0.00123194 0.00364112
C7 0.09941830 0.09481159 0.04891971
C8 -0.02491885 -0.26078653 -0.19620480
C9 -0.41465670 -0.12738672 0.05115081
C10 0.02557669 0.16262058 0.16731063
C11 0.00085286 0.00020831 -0.00148881
H12 -0.00355661 -0.00039973 0.00546338
C13 -0.00172937 -0.00107796 0.00128849
H14 0.00078319 -0.00048891 0.00134289
H15 0.00575700 -0.00138244 -0.01832550
C16 0.00278124 -0.00307613 0.01036454
C17 0.31576986 0.12542938 -0.04713989
H18 -0.00318489 0.00706116 -0.00132964
H19 -0.00325572 0.01085285 -0.00397463
N20 -0.00076980 0.00057746 -0.00197501
H21 0.00988214 -0.00647428 0.00232275
H22 -0.00009924 0.00043610 -0.00101310
N23 0.00424294 -0.00354067 0.00044963
C24 -0.00340811 -0.00133717 -0.00074351
H25 -0.00128635 -0.00034961 0.00098022
H26 -0.00096457 0.00139658 -0.00037256
H27 -0.00106392 0.00198255 -0.00003795
C28 0.00034233 -0.00041899 0.00040521
H29 0.00051367 -0.00088884 0.00036527
H30 0.00053990 -0.00042238 -0.00010811
H31 0.00187736 -0.00091143 -0.00045708
C32 -0.00120240 -0.00065934 0.00090251
H33 -0.00065449 0.00141676 -0.00067053
H34 -0.00017323 0.00018781 0.00021599
H35 -0.00872514 -0.00565276 -0.01357257
H36 -0.00249948 0.00653779 -0.00614371
H37 -0.00026854 0.00034165 0.00017010
---------------------------------------------------
norm: 0.7026
I'll appreciate any info about the handling of these matrices.
thanks
Last edited by alejandro (2019-08-02 20:32:34)
Offline
See https://doi.org/10.1021/acs.jctc.6b00384
"CI derivative coupling" is h^AB
"CSF derivative coupling" is CSF^f^AB
"Total derivative coupling" is f^AB (eq. 6)
Offline
Thanks a lot, Ignacio. To get the gradients of the two states (g^A and g^B) should I to add PNEW keyword to the input file right? If it is yes, how exactly would be if I want the gradients for S0 and S1 states?
I am using the 8.2 version, and I was wondering if the 8.4 version gives a different (more detailed) information regarding NAC calculation in the output file? e.g., orthogonal and normalized vectors x̂ and ŷ directly in the output file.
Thanks
Offline
I don't think you need PNEW (the manual says the gradient is not printed, that's not true in my experience). You just need to run separate gradient calculations with ROOT=1 and ROOT=2 (or set the default root with RLXRoot in RASSCF). The orthonormalized vectors, etc. only make at an intersection point (while the NAC can be computed at any arbitrary geometry). OpenMolcas (and I think molcas 8.2 and 8.4 too) will print all this info after a successful CI optimization. You can "force" convergence on such optimization by setting a very large threshold.
Offline
Thanks, Ignacio, very helpful your answers
Offline