Molcas Forum

Support and discussions for Molcas and OpenMolcas users and developers

You are not logged in.

Announcement

Welcome to the Molcas forum.

Please note: The forum's URL has changed. The new URL is: https://molcasforum.univie.ac.at. Please update your bookmarks!

You can choose an avatar and change the default style by going to "Profile" → "Personality" or "Display".

#1 2022-05-25 04:34:06

xyin
Member
Registered: 2022-05-12
Posts: 6

How to solve the low Reference weight?

Dear Molcas users:

In my system, I set the active space to cas(14,14), which I think already contains all pairs of pi orbitals, but the reference state  is still very small, only about 0.51684.

According to the manual, i think the active space lacks an important orbital, however, I can't find it.  Should I keep increasing the active space?

Also, I saw the instructions forChecking the list of large perturbative contributions (small denominators combined with large RHS values; check the output) and also the occupation number of the CASPT2 orbitals. Can this information tell us what the missing orbitals are?

Any hints would be very helpful! Thank you!!


Here is my input:

&RASSCF
Title = 1413-defTZVP-S0
FILEORB = 36-deftzvp_uhf_uno_asrot2gvb41_s.INPORB
Symmetry = 1
Charge = 0
Spin = 1
RAS2 = 14
nActE1 = 14 0 0
CiRoot = 5 5 1
Rlxroot= 1

&CASPT2
Multistate = 5 1 2 3 4 5
Imaginary Shift = 0.2
IPEA=0

Here is part of my output:

 Compute H0 matrices for state    1
--------------------------------------------------------------------------------
 
 With new orbitals, the CI array of state    1
--------------------------------------------------------------------------------
 CI COEFFICIENTS LARGER THAN  0.50D-01
  Occupation of active orbitals, and spin coupling
  of open shells. (u,d: Spin up or down).
  SGUGA info is (Midvert:IsyUp:UpperWalk/LowerWalk)
        Conf  SGUGA info        Occupation         Coefficient         Weight
           1  ( 1:1:   1/   1)   22222220000000       0.896759       0.804177
         240  ( 3:1:  22/   7)   u22222du00000d       0.060379       0.003646
         247  ( 3:1:   1/   8)   22222022000000      -0.057418       0.003297
         248  ( 3:1:   2/   8)   2222202ud00000      -0.066496       0.004422
         420  ( 3:1:   6/  14)   22220220020000      -0.050547       0.002555
         424  ( 3:1:  10/  14)   22220220002000      -0.054110       0.002928
         681  ( 3:1:  15/  23)   22022220000200      -0.078021       0.006087
         771  ( 3:1:  21/  26)   20222220000020      -0.086661       0.007510
         807  ( 3:1:   1/  28)   02222222000000      -0.055729       0.003106
         813  ( 3:1:   7/  28)   0222222u00d000      -0.055319       0.003060
 
 
  Constructing G3/F3
   memory avail:     29.422625160 GB
   memory used:       4.394899080 GB
  Sym:   1, #Tasks:    196
--------------------------------------------------------------------------------
 H0 matrices have been computed.
 
********************************************************************************
  CASPT2 EQUATION SOLUTION
--------------------------------------------------------------------------------

 Computing the S/B matrices
 --------------------------
 
  Construct S matrices
 
  Construct B matrices
 
  Find transformation matrices to eigenbasis of block-diagonal part of H0.
  Eliminate linear dependency. Thresholds for:
   Initial squared norm  :  0.1000E-09
   Eigenvalue of scaled S:  0.1000E-07
 
  Condition numbers are computed after diagonal scaling and after removal of
  linear dependency. Resulting sizes, condition numbers, and times:
    CASE(SYM)       NASUP       NISUP      NINDEP     COND NR  CPU (s)
   VJTU  (1)         2744          46        2729   0.40E+09       63
   VJTIP (1)          105        1081         105   0.14E+06        0
   VJTIM (1)           91        1035          91   0.42E+04        0
   ATVX  (1)         2744         408        2729   0.38E+09       63
   AIVX  (1)          392       18768         391   0.23E+07        1
   VJAIP (1)           14      441048          14    18.            0
   VJAIM (1)           14      422280          14    18.            0
   BVATP (1)          105       83436         105   0.17E+06        0
   BVATM (1)           91       83028          91   0.55E+04        0
   BJATP (1)           14     3838056          14    13.            0
   BJATM (1)           14     3819288          14    13.            0
 
  Total nr of CASPT2 parameters:
   Before reduction:   320544554
   After  reduction:   320518976

 Computing the right-hand side (RHS) elements
 --------------------------------------------
  Using conventional MKRHS algorithm
 
 The contributions to the second order correlation energy in atomic units.
-----------------------------------------------------------------------------------------------------------------------------
  IT.      VJTU        VJTI        ATVX        AIVX        VJAI        BVAT        BJAT        BJAI        TOTAL       RNORM  
-----------------------------------------------------------------------------------------------------------------------------
   1    -0.007522   -0.012194   -0.023466   -0.280750   -0.153993   -0.053235   -0.434634   -1.960362   -2.926157    0.026003
   2    -0.007791   -0.012451   -0.023763   -0.283598   -0.154832   -0.053463   -0.435415   -1.961336   -2.932651    0.005745
   3    -0.007803   -0.012461   -0.023781   -0.283819   -0.154865   -0.053483   -0.435483   -1.961299   -2.932993    0.001359
   4    -0.007803   -0.012459   -0.023767   -0.283718   -0.154822   -0.053472   -0.435430   -1.961244   -2.932715    0.000332
   5    -0.007802   -0.012459   -0.023767   -0.283710   -0.154820   -0.053471   -0.435426   -1.961243   -2.932698    0.000090
   6    -0.007803   -0.012459   -0.023768   -0.283714   -0.154822   -0.053472   -0.435429   -1.961247   -2.932713    0.000020
   7    -0.007803   -0.012459   -0.023768   -0.283714   -0.154822   -0.053472   -0.435430   -1.961247   -2.932714    0.000005
   8    -0.007803   -0.012459   -0.023768   -0.283714   -0.154822   -0.053472   -0.435429   -1.961247   -2.932713    0.000001
-----------------------------------------------------------------------------------------------------------------------------
 
  FINAL CASPT2 RESULT:
 
  Correlation energy /Case, /Symm, and sums:
 VJTU     -0.00780260 -0.00780260
 VJTIP    -0.01114800 -0.01114800
 VJTIM    -0.00131127 -0.00131127
 ATVX     -0.02376766 -0.02376766
 AIVX     -0.28371399 -0.28371399
 VJAIP    -0.08165358 -0.08165358
 VJAIM    -0.07316839 -0.07316839
 BVATP    -0.04762963 -0.04762963
 BVATM    -0.00584221 -0.00584221
 BJATP    -0.18145329 -0.18145329
 BJATM    -0.25397609 -0.25397609
 BJAIP    -1.28407060 -1.28407060
 BJAIM    -0.67717606 -0.67717606
 Summed:  -2.93271337 -2.93271337
 
      Reference energy:        -931.9417673901
      E2 (Non-variational):      -2.9327133671
      Shift correction:          -0.0146913759
      E2 (Variational):          -2.9474047430
      Total energy:            -934.8891721330
      Residual norm:              0.0000003182
      Reference weight:           0.51684
 
      Contributions to the CASPT2 correlation energy
      Active & Virtual Only:         -0.0772395017
      One Inactive Excited:          -0.7269459655
      Two Inactive Excited:          -2.1285278999
 
 
++ Denominators, etc.
--------------------------------------------------------------------------------------------------------------
 Report on small energy denominators, large coefficients, and large energy contributions.
  The ACTIVE-MIX index denotes linear combinations which gives ON expansion functions
  and makes H0 diagonal within type.
  DENOMINATOR: The (H0_ii - E0) value from the above-mentioned diagonal approximation.
  RHS VALUE  : Right-Hand Side of CASPT2 Eqs.
  COEFFICIENT: Multiplies each of the above ON terms in the first-order wave function.
 Thresholds used:
         Denominators: 0.3000
         Coefficients: 0.0250
 Energy contributions: 0.0050
 
CASE  SYMM ACTIVE-MIX  NON-ACTIVE INDICES          DENOMINATOR     RHS VALUE       COEFFICIENT     CONTRIBUTION
VJTU     1  Mu1.0001  In1.063                       0.29801604     -0.00019482      0.00054100     -0.00000011
VJTU     1  Mu1.0001  In1.064                       0.29862795      0.00192546     -0.00521200     -0.00001004
VJTU     1  Mu1.0001  In1.065                       0.29119750     -0.00086287      0.00128861     -0.00000111
VJTU     1  Mu1.0001  In1.066                       0.28239780     -0.00000333     -0.00003271      0.00000000
VJTU     1  Mu1.0001  In1.067                       0.20649505     -0.00049922      0.00104040     -0.00000052
VJTU     1  Mu1.0002  In1.067                       0.27727754     -0.00149909      0.00427165     -0.00000640
ATVX     1  Mu1.0001  Se1.082                       0.17309653     -0.00000850      0.00010989     -0.00000000
ATVX     1  Mu1.0002  Se1.082                       0.24357274      0.00003858     -0.00011066     -0.00000000
ATVX     1  Mu1.0003  Se1.082                       0.26376109     -0.00002746      0.00009133     -0.00000000
ATVX     1  Mu1.0001  Se1.083                       0.19017446      0.00000305      0.00001209      0.00000000
ATVX     1  Mu1.0002  Se1.083                       0.26065067      0.00000895     -0.00002753     -0.00000000
ATVX     1  Mu1.0003  Se1.083                       0.28083902     -0.00000243      0.00001580     -0.00000000
ATVX     1  Mu1.0001  Se1.084                       0.20072498     -0.00001141      0.00004780     -0.00000000
ATVX     1  Mu1.0002  Se1.084                       0.27120119      0.00000407     -0.00001779     -0.00000000
ATVX     1  Mu1.0003  Se1.084                       0.29138955      0.00001241     -0.00001107     -0.00000000
ATVX     1  Mu1.0001  Se1.085                       0.20679027      0.00003422     -0.00005125     -0.00000000
ATVX     1  Mu1.0002  Se1.085                       0.27726648      0.00000748     -0.00002755     -0.00000000
ATVX     1  Mu1.0003  Se1.085                       0.29745484     -0.00000368      0.00002617     -0.00000000
ATVX     1  Mu1.0001  Se1.086                       0.21915436     -0.00015999      0.00031678     -0.00000005
ATVX     1  Mu1.0002  Se1.086                       0.28963057      0.00002305     -0.00002200     -0.00000000
ATVX     1  Mu1.0001  Se1.087                       0.23324696     -0.00000327     -0.00005057      0.00000000
ATVX     1  Mu1.0001  Se1.088                       0.22754391      0.00006061     -0.00015034     -0.00000001
ATVX     1  Mu1.0002  Se1.088                       0.29802012     -0.00001854      0.00003912     -0.00000000
ATVX     1  Mu1.0001  Se1.089                       0.23549626      0.00000270     -0.00007686     -0.00000000
ATVX     1  Mu1.0001  Se1.090                       0.25468256      0.00015777     -0.00028444     -0.00000004
ATVX     1  Mu1.0001  Se1.091                       0.24762479      0.00000124     -0.00001393     -0.00000000
ATVX     1  Mu1.0001  Se1.092                       0.26433438      0.00025977     -0.00048163     -0.00000013
ATVX     1  Mu1.0001  Se1.093                       0.26992284     -0.00159938      0.00288276     -0.00000461
ATVX     1  Mu1.0001  Se1.094                       0.27060013     -0.00019994      0.00033916     -0.00000007
ATVX     1  Mu1.0001  Se1.095                       0.27848273     -0.00016967      0.00031276     -0.00000005
ATVX     1  Mu1.0001  Se1.096                       0.28441576     -0.00004381      0.00006268     -0.00000000
ATVX     1  Mu1.0001  Se1.097                       0.28951388      0.00004381     -0.00007834     -0.00000000
ATVX     1  Mu1.0001  Se1.098                       0.29807393     -0.00054168      0.00108759     -0.00000059
--
 
   (Skipping property calculation,
    use PROP keyword to activate)
 
********************************************************************************
  CASPT2 MULTI-STATE COUPLINGS SECTION
 
 Hamiltonian Effective Couplings
 -------------------------------
 
                 |    1 > 
 <    1 |  -9.34889172133045E+02
 <    2 |  -1.44516943616683E-02
 <    3 |   1.32260584237542E-02
 <    4 |  -3.03190823400640E-03
 <    5 |   3.28160507115732E-03
 
Time spent for multi-state couplings for root    1:
 ----------------- CPU TIME  -------- WALL TIME
 <    1 |             0.000               0.000
 <    2 |         23100.840            1214.150
 <    3 |         35556.840            1892.180
 <    4 |         31698.370            1666.220
 <    5 |         32604.220            1725.720
 
  CASPT2 TIMING INFO FOR STATE      1
 
                         cpu time  (s)  wall time (s) 
                         -------------  ------------- 
 
  Group initialization        24327.86       1884.49
  - Fock matrix build         13392.95       1056.10
  - integral transforms       10904.87        809.98
  State initialization        22874.35       1169.67
  - density matrices          22874.23       1169.66
  CASPT2 equations            12249.10       3682.84
  - H0 S/B matrices               0.33          0.46
  - H0 S/B diag                 406.52         30.13
  - H0 NA diag                    3.18          0.49
  - RHS construction              4.00          9.06
  - PCG solver                11834.38       3639.00
    - scaling                    22.78         28.78
    - lin. comb.                887.32        122.80
    - inner products           1193.66        135.15
    - basis transforms          961.77         85.80
    - sigma routines           8704.85       3200.62
  - array collection              0.00          0.00
  Properties                      0.00          0.00
  Gradient/MS coupling       122960.27       6502.51
 Total time                  182411.58      13239.51

Last edited by xyin (2022-05-25 04:35:21)

Offline

#2 2022-05-25 07:49:33

Ignacio
Administrator
From: Uppsala
Registered: 2015-11-03
Posts: 1,011

Re: How to solve the low Reference weight?

What makes you think the reference weight is "very small"? You should expect it to decrease as your total number of electrons increases. A reference weight of ~0.8 is common for small organic molecules, but you won't see such values in larger molecules.

The common estimate is (https://books.google.se/books?id=40DqCA … &q&f=false):

w = (1+alpha)^(-N/2)

where N is the number of correlated electrons (i.e. not including those in the frozen core orbitals), and alpha is a constant of around 0.015 (related to the average correlation energy per electron pair).

Your value looks fine if you have around 90 electrons, but it could also be reasonable for anything between 65 and 130 electrons (it just depends on which value you use for alpha, which is arbitrary). More importantly, there are no large contributions or coefficients in your "Denominators etc." list, so I see no reason to suspect problems

Offline

#3 2022-05-26 03:27:10

xyin
Member
Registered: 2022-05-12
Posts: 6

Re: How to solve the low Reference weight?

Ignacio wrote:

What makes you think the reference weight is "very small"? You should expect it to decrease as your total number of electrons increases. A reference weight of ~0.8 is common for small organic molecules, but you won't see such values in larger molecules.

The common estimate is (https://books.google.se/books?id=40DqCA … &q&f=false):

w = (1+alpha)^(-N/2)

where N is the number of correlated electrons (i.e. not including those in the frozen core orbitals), and alpha is a constant of around 0.015 (related to the average correlation energy per electron pair).

Your value looks fine if you have around 90 electrons, but it could also be reasonable for anything between 65 and 130 electrons (it just depends on which value you use for alpha, which is arbitrary). More importantly, there are no large contributions or coefficients in your "Denominators etc." list, so I see no reason to suspect problems


Thank you so much for your reply!

Offline

Board footer

Powered by FluxBB 1.5.11

Last refresh: Today 17:03:22