Support and discussions for Molcas and OpenMolcas users and developers
You are not logged in.
Please note: The forum's URL has changed. The new URL is: https://molcasforum.univie.ac.at. Please update your bookmarks!
You can choose an avatar and change the default style by going to "Profile" → "Personality" or "Display".Hi everyone,
I was trying to compute the SOC matrix elements between singlet and triplet states of a cluster. However I found that how does the cluster orient could affect the results a lot. Sometimes a zero matrix element in one orientation could become non-negligible in another. For example the following shows the difference results from two calculation with different orientation of the same geometry of C_3v point group (I didn't impose this symmetry in my calculation):
The first one is by having the axis pointing in the z direction:
Complex SO-Hamiltonian matrix elements over
spin components of spin-free eigenstates (SFS):
(In cm-1. Print threshold: 0.001 cm-1)
----------------------------------------------------------------------
I1 S1 MS1 I2 S2 MS2 Real part Imag part Absolute
4 1.0 -1.0 2 1.0 0.0 0.091 -0.271 0.286
5 1.0 0.0 1 1.0 -1.0 -0.091 -0.271 0.286
5 1.0 0.0 3 1.0 1.0 0.091 -0.271 0.286
6 1.0 1.0 2 1.0 0.0 -0.091 -0.271 0.286
7 1.0 -1.0 2 1.0 0.0 -0.271 -0.091 0.286
7 1.0 -1.0 4 1.0 -1.0 -0.000 -0.027 0.027
8 1.0 0.0 1 1.0 -1.0 0.271 -0.091 0.286
8 1.0 0.0 3 1.0 1.0 -0.271 -0.091 0.286
9 1.0 1.0 2 1.0 0.0 0.271 -0.091 0.286
9 1.0 1.0 6 1.0 1.0 -0.000 0.027 0.027
10 0.0 0.0 1 1.0 -1.0 -0.095 0.029 0.099
10 0.0 0.0 3 1.0 1.0 -0.095 -0.029 0.099
10 0.0 0.0 4 1.0 -1.0 -0.188 0.264 0.324
10 0.0 0.0 5 1.0 0.0 -0.000 -0.175 0.175
10 0.0 0.0 6 1.0 1.0 -0.188 -0.264 0.324
10 0.0 0.0 7 1.0 -1.0 0.264 0.188 0.324
10 0.0 0.0 8 1.0 0.0 0.000 -0.006 0.006
10 0.0 0.0 9 1.0 1.0 0.264 -0.188 0.324
11 0.0 0.0 1 1.0 -1.0 0.029 0.095 0.099
11 0.0 0.0 3 1.0 1.0 0.029 -0.095 0.099
11 0.0 0.0 4 1.0 -1.0 -0.264 -0.188 0.324
11 0.0 0.0 5 1.0 0.0 -0.000 -0.006 0.006
11 0.0 0.0 6 1.0 1.0 -0.264 0.188 0.324
11 0.0 0.0 7 1.0 -1.0 -0.188 0.264 0.324
11 0.0 0.0 8 1.0 0.0 -0.000 0.175 0.175
11 0.0 0.0 9 1.0 1.0 -0.188 -0.264 0.324
12 0.0 0.0 2 1.0 0.0 0.000 0.445 0.445
12 0.0 0.0 4 1.0 -1.0 -0.202 0.068 0.213
12 0.0 0.0 6 1.0 1.0 -0.202 -0.068 0.213
12 0.0 0.0 7 1.0 -1.0 -0.068 -0.202 0.213
12 0.0 0.0 9 1.0 1.0 -0.068 0.202 0.213
----------------------------------------------------------------------
The second one is by having the axis pointing in the [111] direction:
Complex SO-Hamiltonian matrix elements over
spin components of spin-free eigenstates (SFS):
(In cm-1. Print threshold: 0.001 cm-1)
----------------------------------------------------------------------
I1 S1 MS1 I2 S2 MS2 Real part Imag part Absolute
4 1.0 -1.0 1 1.0 -1.0 -0.000 0.316 0.316
4 1.0 -1.0 2 1.0 0.0 -0.171 0.053 0.179
5 1.0 0.0 1 1.0 -1.0 0.171 0.053 0.179
5 1.0 0.0 3 1.0 1.0 -0.171 0.053 0.179
6 1.0 1.0 2 1.0 0.0 0.171 0.053 0.179
6 1.0 1.0 3 1.0 1.0 -0.000 -0.316 0.316
7 1.0 -1.0 1 1.0 -1.0 -0.000 -0.096 0.096
7 1.0 -1.0 2 1.0 0.0 -0.160 -0.228 0.278
7 1.0 -1.0 4 1.0 -1.0 0.000 0.015 0.015
7 1.0 -1.0 5 1.0 0.0 0.011 -0.011 0.015
8 1.0 0.0 1 1.0 -1.0 0.160 -0.228 0.278
8 1.0 0.0 3 1.0 1.0 -0.160 -0.228 0.278
8 1.0 0.0 4 1.0 -1.0 -0.011 -0.011 0.015
8 1.0 0.0 6 1.0 1.0 0.011 -0.011 0.015
9 1.0 1.0 2 1.0 0.0 0.160 -0.228 0.278
9 1.0 1.0 3 1.0 1.0 -0.000 0.096 0.096
9 1.0 1.0 5 1.0 0.0 -0.011 -0.011 0.015
9 1.0 1.0 6 1.0 1.0 0.000 -0.015 0.015
10 0.0 0.0 1 1.0 -1.0 0.056 -0.079 0.096
10 0.0 0.0 2 1.0 0.0 0.000 0.033 0.033
10 0.0 0.0 3 1.0 1.0 0.056 0.079 0.096
10 0.0 0.0 4 1.0 -1.0 -0.088 0.165 0.187
10 0.0 0.0 5 1.0 0.0 -0.000 -0.413 0.413
10 0.0 0.0 6 1.0 1.0 -0.088 -0.165 0.187
10 0.0 0.0 7 1.0 -1.0 -0.263 0.118 0.289
10 0.0 0.0 8 1.0 0.0 -0.000 0.207 0.207
10 0.0 0.0 9 1.0 1.0 -0.263 -0.118 0.289
11 0.0 0.0 1 1.0 -1.0 0.059 0.019 0.062
11 0.0 0.0 2 1.0 0.0 0.000 -0.109 0.109
11 0.0 0.0 3 1.0 1.0 0.059 -0.019 0.062
11 0.0 0.0 4 1.0 -1.0 0.264 -0.117 0.289
11 0.0 0.0 5 1.0 0.0 0.000 -0.206 0.206
11 0.0 0.0 6 1.0 1.0 0.264 0.117 0.289
11 0.0 0.0 7 1.0 -1.0 0.055 0.308 0.313
11 0.0 0.0 8 1.0 0.0 0.000 -0.211 0.211
11 0.0 0.0 9 1.0 1.0 0.055 -0.308 0.313
12 0.0 0.0 1 1.0 -1.0 -0.182 -0.182 0.257
12 0.0 0.0 2 1.0 0.0 -0.000 -0.257 0.257
12 0.0 0.0 3 1.0 1.0 -0.182 0.182 0.257
12 0.0 0.0 4 1.0 -1.0 -0.119 0.170 0.207
12 0.0 0.0 5 1.0 0.0 -0.000 -0.072 0.072
12 0.0 0.0 6 1.0 1.0 -0.119 -0.170 0.207
12 0.0 0.0 7 1.0 -1.0 0.127 0.039 0.133
12 0.0 0.0 8 1.0 0.0 0.000 -0.236 0.236
12 0.0 0.0 9 1.0 1.0 0.127 -0.039 0.133
----------------------------------------------------------------------
What causes this difference, are we supposed to keep the symmetry axis along the z direction? And what is the right way to compute the geometry slight distorted (no more symmetric), or more generally how to orient molecules with no symmetry (C1) at all?
Thanks in advance!
Last edited by Benchenh (2021-04-11 16:05:24)
Offline
Molecule orientation affects only individual matrix elements, but not the observables. You can think of a unitary transformation of the SOC Hamiltonian due to the axes changes. SOC energies will not depend on the orientation, but SOC Hamiltonian and wave functions will.
If your molecule has single magnetic ion, you can get useful geometrical analysis from single_aniso module.
Offline